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Extracting biological relations from biomedical literature can deliver personalized treatment to individual 

patients based on their genomic profiles. In this paper, we present a novel sentence-level attention-based 

deep neural network to predict the semantic relationship between medical entities. We utilize a trans- 

fer learning based paradigm which considerably improves the prediction performance. The main distinc- 

tion of the proposed approach is that it relies solely on sentence information, putting aside handcrafted 

biomedical features. Sentence information is transformed into embedding vectors and improved by the 

pre-trained embedding models trained on PubMed and PMC papers. Extensive evaluations show that the 

proposed approach achieves a competitive performance in comparison with the state-of-the-art meth- 

ods, while do not require any domain-specific biomedical feature. The evaluation data and resources are 

available at https://github.com/EsmaeilNourani/Deep-GDAE/ 
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. Background 

In medical studies, understanding the function of genetics

n diseases is one of the fundamental aims of the post-genome

ra. Recently, there has been an increasing interest in precision

edicine, which delivers specific treatment to individual patients

ccording to their genomic characteristics. Identifying the rela-

ionships between gene biomarkers with specific diseases plays an

mportant role in advancing stratified medicine because it helps to

etermine which patients will respond best to which treatments

 Thompson and Ananiadou, 2017 ; Xu et al., 2016 ). For this reason,

esearch on identification of GDA has gained great attention over

he last decade ( Özgür et al., 2008 ; Kumar et al., 2018 ). Although

hese relationships have been investigated extensively considering

heir role in various aspects of preventing, diagnosing and treating

llnesses, much of these findings can be found in a large amount

f biomedical literature. This makes it difficult for researchers

o provide a detailed overview of which genes are associated

ith which diseases. Moreover, recognizing all potential relations

y using wet experimental techniques is a time-consuming and
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xpensive process. Biomedical text mining could be a remedy that

lls these gaps and paves the way for utilizing new findings and

voiding tedious manual reads and analysis. 

MEDLINE 1 includes a database of publications for biomedical

iterature from around the world. Since 1996, PubMed 

2 has pro-

ided free access to MEDLINE and links to full-text journal articles

nd other library resources. To date, over 29 million bibliograph-

cal data of biomedical literature from MEDLINE are available on

ubMed. Fig. 1 reflects the growth speed of the total publications

n MEDLINE including gene and disease in their titles or abstracts

rovided by PubMed. 

It is difficult for scientists to trace and elicit the useful informa-

ion contained in this literature. Biomedical relation extraction is

he process of automatically discovering relations between name

ntities in biomedical texts ( Zhou et al., 2014 ). These biomedical

ame entities belong in different predefined categories such as

he names of genes, diseases or proteins. Finding the association

etween gene and disease by mining the biomedical literature is

ddressed in this paper. A large volume of research work has been

ublished in the last decade to apply different types of mining
1 https://www.nlm.nih.gov/bsd/pmresources.html . 
2 https://www.ncbi.nlm.nih.gov/pubmed/ . 
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Fig. 1. Total publications of MEDLINE including gene and disease in their titles or 

abstracts since 20 0 0. 
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approaches to the biomedical domain. These methods range from

plain rule-based approaches to sophisticated architectures such as

deep neural networks. 

In this paper, we have developed a deep learning classification

model composed of two deep neural networks: A CNN and an Att-

BiLSTM. We demonstrate that our proposed deep learning classifier

performs better in recognizing gene-disease relationships com-

pared to other state-of-the-art methods without requiring biolog-

ical features. The main contributions of this paper are as follows: 

• We took a novel approach by incorporating CNN and Att-

BiLSTM neural networks for sentence-level GDA extraction.

Despite traditional text mining methods, deep neural network-

based methods don’t require any use of a feature engineering

process by domain experts; therefore, they aren’t time-

consuming and automatically extract features. 
• We have shown the feasibility of utilizing transfer learning to

considerably improve the results by extracting new features for

the SNP-Phenotype data set using a base model trained on the

GDA corpus. 
• We developed a new dataset called GDA corpus as a sentence-

level evaluation dataset for extracting the association between

genes and diseases based on some efficient databases. 
• Using the attention mechanism, we encoded the sequence

data by assigning an importance score to each element of the

sentence. Attentions were applied over the outputs of BiLSTM

Network in the form of trainable weights. 
• A prominent advantage of Deep-GDAE is that it doesn’t rely on

any domain specific information such as biomedical features of

genes or diseases (such as phenotype and functional features),

as the lack of this information may cause some limitations in

applying many approaches. 

The rest of this paper is organized as follows: In Section 2 , re-

lated works are reviewed; Section 3 presents our proposed model

in detail; Sections 4 and 5 are dedicated to the details of the

datasets, experiments and results; and finally, Section 6 concludes

the paper. 

2. Related works 

Medical documents contain lots of information and are able

to be used in many health-related applications. Extracting binary

relations between entities is one of the common tasks in biomed-

ical text mining. The main purpose of relation extraction task is

to extract interactions between entities. Extracting protein-protein

interactions, chemical-disease relations or drug-drug interactions

are particularly relevant examples in the biomedical domain. 

A large number of data-mining methods for extracting biomed-

ical relations have been proposed in recent decades that cover
 wide range of relation extraction approaches from simple co-

ccurrence statistics ( Hong-Woo Chun et al., 2006 ; Al-Mubaid and

ingh, 2010 ; X. Chen et al., 2018 ) to complex structures using

yntactic analysis such as dependency parsing ( Thompson and

naniadou, 2017 ; Vahideh Reshadat, 2019 ) or sophisticated neural

etworks ( Lee et al., 2018 ; X. Chen et al., 2018 ). We review a few

mportant techniques in biomedical relation extraction field. 

.1. Traditional biomedical relation extraction 

Different traditional approaches for relation extraction have

een applied to the biomedical domains. Statistical-based methods

re widely based on detection of co-occurrences of entities from

entences. A statistical method for detecting GDAs is proposed in

 Zhang et al., 2018 ), which utilizes the benefits of network-based

nalysis and Latent Dirichlet Allocation (LDA) modeling to decrease

oises for a large amount of data and recognizing latent relations.

o-occurrence-based models are statistical methods that capture

he relations between entities based on co-occurrence statistics

n texts ( Aggarwal and Zhai, 2012 ). This is based on the idea that

he entities which frequently appear together are more likely to

e related in some way. Know-GENE ( Zhou and Skolnick, 2016 )

s a knowledge-based method that uses co-occurrence based

nformation from gene-gene mutual information to predict GDAs.

hen et al. (2008) employ co-occurrence statistics to identify the

ssociation degree between drugs and diseases based on clinical

ecords. Cao et al. (2007) automatically calibrate the statistic value

nd utilize it for the disease-findings association detection. In

nother study, Cao et al. (2005) propose that statistical techniques

an be successfully applied for detecting strong disease-finding

ssociations. Their use-case was a knowledge base construction

or the patient problem list generation ( Meystre et al., 2008 ).

o-occurrence-based approaches ( Hong-Woo Chun et al., 2006 ;

erez-Iratxeta et al., 2002 ; Pletscher-Frankild et al., 2015 ) usually

btain high recall but low precision. 

Some methods employ rules that represent GDAs

 Mahmood et al., 2016 ). These rules can be defined manually

 Tuttle et al., 1998 ) or automatically ( Bramsen et al., 2006 ).

hese methods commonly do not require annotated data to

rain a system and achieve low recall but high precision. PKDE4J

 Song et al., 2015 ) is a text mining system that has been developed

o recognize name entities and extract gene-disease relations by

sing a rule-based flexible framework. Hybrid approaches are

sed in almost all tasks of relation extraction and are a well-

nown idea in many areas ( Reshadat et al., 2016 ; Huang et al.,

006 ). In ( Hou and Kuo, 2016 ), there is a hybrid method for

iscovering GDAs from biomedical texts, which combines rule

earning and statistical techniques. Some of the approaches are

ased on textual level extraction patterns or rely on outputs

rom a shallow parser ( Cohen et al., 2011 ; Hakenberg et al.,

010 ; Tudor and Vijay-Shanker, 2012 ), others methods utilize

eep parsers with hand-crafted patterns ( Fundel et al., 2006 ;

ilicoglu and Bergler, 2011 ; Kim and Rebholz-Schuhmann, 2011 ). 

Machine learning (ML) approaches appeared to overcome these

imitations. ML-based methods learn attributes of the instance

ocuments/sentences that will detect those relations of interest

utomatically in unseen texts. Some systems rely on supervised

achine learning algorithms ( Aggarwal and Zhai, 2012 ; Quan and

en, 2014 ; Airola et al., 2008 ; Bui et al., 2010 ; Riedel et al., 2011 ;

lachos and Craven, 2012 ) and leverage lexical, syntactic, and

emantic context features to determine the relations between

enes and diseases. A supervised machine learning method has

een proposed in ( Bhasuran and Natarajan, 2018 ), which employs

emantic and syntactic features along with word embedding.

hese features train an ensemble support vector machine for

xtracting GDAs from four corpora. Supervised methods use a
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Fig. 2. A taxonomy of Relation Extraction approaches in the biomedical domain. 
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ata set (or corpus) of texts in which relations have been an-

otated. Generating adequate annotated text is expensive and

ime-consuming. Semi-supervised ( Natarajan and Dhillon, 2014 )

nd unsupervised approaches ( Sun et al., 2011 ; Percha et al.,

018 ) alleviate this deficient by using less or no training data. SSL1

 Nguyen and Ho, 2012 ) is a semi-supervised method that combines

ultiple data features for predicting GDAs. A method for the pre-

iction of human disease-related gene clusters has been proposed

n Sun et al. (2011) . This method solves the prediction problem by

lustering analysis with the use of some biological features. 

Some approaches use a combination of the previous meth-

ds to identify relations between genes and diseases such as

hompson and Ananiadou (2017) and Zhou and Fu (2018) . The

ethod proposed in Thompson and Ananiadou (2017) incorporates

elation extraction methods according to sentence difficulty. In

his approach, different kinds of methods including co-occurrence,

ependency paths, and dependency patterns are used for different

ypes of sentences with various levels of difficulty. 

BeFree ( Bravo et al., 2015 ) is a text mining system that identi-

es gene-disease, drug-disease, and drug-target associations. This

ystem is based on kernels which are able to classify documents

ased on how an association between two entities is represented.

ome global and local context kernels are leveraged to represent

hese relations. A combination of a Shallow Linguistic Kernel (K SL )

 Giuliano et al., 2006 ) which uses only shallow syntactic informa-

ion with a kernel that uses deep syntactic information, and the

ependency Kernel (K DEP ), which uses the syntactic information of

he sentence, can be used for the detection of associations between

enes, diseases, and drugs. The K SL was successfully used to extract

dverse drug associations from clinical reports ( Gurulingappa et al.,

012 ) and drug-drug relations ( Natarajan and Dhillon, 2014 ), and

he K DEP used the syntactic information of the sentence. 

.2. Deep neural network-based relation extraction 

Recently, deep learning based methods have been proven useful

or biomedical relation extraction ( Asada et al., 2017 ; Peng and

u, 2017 ; Sahu et al., 2016 ; Hua and Quan, 2016 ; Quan et al., 2016 ;

sieh et al., 2017 ) because they require only a simple feature

eneration process. Efficient feature engineering is one of the main

dvantages of deep learning based text mining methods. 

Convolutional and recurrent neural networks are the two major

tructures used for biomedical relation extraction task. In these

etworks, the words in the sentences are generally represented by

ome embedding vectors. 

Deep neural networks are used in curating various types

f biomedical relations such as mutation-gene-drug ( Lee et al.,

018 ), miRNA-disease ( X. Chen et al., 2018 ; Fu and Peng, 2017 ),

hemical-disease ( Gu et al., 2017 ; Wei et al., 2016 ), and drug-

isease ( Li et al., 2017 ). Sahu et al. (2016) showed a CNN based

elation extraction method for medical data. The input to this

odel is a complete sentence annotated with medical entities and

he output of the model is a vector of probabilities corresponding

o all existing relation types. 

In this study, we have used a novel approach to extract the

elations between genes and diseases at the sentence level. For

his purpose, we have used a deep CNN and a BiLSTM. To the best

f our knowledge, this is the first study which has utilized a deep

odel for GDA extraction. Fig. 2 shows a taxonomy of biomedical

elation extraction approaches. 

. Method 

We consider the gene-disease relation extraction task to be

 binary classification problem. For this purpose, a sentence-

evel classifier has been developed. Before the classification task,
ll sentences are pre-processed so that they are represented

y pre-trained embedding vectors. We designed a deep neural

etwork model using features built at the sentence level. The

re-processed sentences are then passed onto the model and the

rue associations are extracted. 

The method presented in this paper is applied for gene-disease

ssociation extraction from text, however, it can be utilized for

ny type of biomedical relation extraction tasks after minor

odifications. For instance, disease-miRNA/lncRNA associations 

 X. Chen et al., 2018 ; Chen and Yan, 2013 ; Chen et al., 2019 ) can

e considered in case that the satisfactory literature is available

or training the model. 

Moreover, Deep-GDAE can be applied for predicting relations

etween biological entities using non-textual data and only by

elying on biological features of gene-disease, RNA-disease, etc.

ith slight modification it can exploit gene or RNA sequences or

ther biological features as input. 

.1. Sentence representation using embedded vectors 

All sentences were processed in several steps and made avail-

ble for further processing by the classifier. Fig. 3 illustrates the

verall workflow of the pre-processing step. 

First, entities were identified in each sentence by using Pub-

ator, a named entity recognition (NER) system ( Wei et al., 2013 ).

ext, we replaced entities in each sentence with some placehold-

rs in order to demonstrate the generality of the task. For conve-

ience and unification, we developed a dictionary by leveraging

xisting vocabularies and assigned an identifier to each vocabulary

e.g. 530 for ‘brain’). Then, we padded each sentence vector to the

aximum sentence length using a 〈 PAD 〉 token. This maximum

ength turned out to be 100, which was selected empirically and

et according to the dataset. Padding sentence vectors to the same

ength is necessary to implement further processes. Word2vec

odels were accompanied by position embedding in order to

agnify the relative position of each word in the sentence. 

.1.1. Word embedding 

Recently, neural networks have been successfully applied to the

mbedding of words into a low-dimensional space. Each word is

epresented as a dense vector of real numbers, and semantically

elated words are mapped to similar vectors. Two popular tools

or general domain texts are word2vec ( T. Mikolov et al., 2013 ;

. Mikolov et al., 2013 ) and GloVe ( Pennington et al., 2014 ). In

he biomedical domain, these models are adapted and trained

ver biomedical texts. To reduce training time and improve the

esults, we used a pre-trained word embedding model that is

rained on PubMed and PMC ( Chiu et al., 2016 ). They use all avail-

ble biomedical scientific literature for learning word embedding

ectors by using models implemented in word2vec. In addition,

e evaluated various pre-trained models and utilized the best

erforming model to obtain the vector representation. 
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Fig. 3. The basic workflow of the preprocessing phase for a sample sentence. The sentence is tagged by Pubtator and each word in the sentence is assigned an ID from the 

dictionary. After padding, the sentence is embedded by pre-trained word-embedding models and the position embedding on our training data. 
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3.1.2. Position embedding 

A positional feature is a kind of lexical feature that represents

the relative distance of entities in a sentence. Words are repre-

sented in a position embedding vector in the sentence embedding

step. 

The relative distance of words to the target entities is an

informative factor for specifying the association between entities.

Unlike word embedding, we trained a position embedding model

on our training data. This kind of embedding can aid the neural

network to follow how closely each word is to the gene or dis-

ease entity. For example, in the sentence “Amyloid beta protein

levels are elevated in the brain of Alzheimer’s disease patients.”;

the relative distance from “patient” to the disease “Alzheimer’s

disease” is 1. Fig. 3 illustrates a more detailed example of two

relative position embedding vectors on gene and disease entities.

The dimension of each relative position embedding is 20. Finally,

all word and position vectors are merged into a unified vector to

produce the final representation of each sentence. 
.2. Deep-GDAE architecture 

Traditional text mining approaches require an elaborate feature

ngineering phase to be implemented by domain experts. Deep

earning based methods involve a simpler feature generation

rocess. We built a sentence-level classification model using the

pecificities of two types of neural network. For general-purpose

equence modeling, LSTM as a special Recurrent Neural Network

RNN) structure has been proven to be a powerful approach for

odeling various dependencies in previous studies ( Xingjian et al.,

015 ). It processes sequence data and utilizes a few gate vectors

o control the transmitting of information along the sequence and

hus enhances the modeling of long-range dependencies in the

entence. 

In addition to the LSTM model, we used a deep CNN over

iomedical text. The process of sentence-level relation extraction

sing CNN and BiLSTM is illustrated in Fig. 4 . As explained in the

revious section, combinations of word and position embedded
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Fig. 4. Architecture of Deep-GDAE for Gene-Disease classification. 
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ector are fed into the networks. Each network takes the pre-

rocessed sentences as input and tries to predicate the relation

etween two entities. There is no need to high dimension of filters

s for images and in each region, we use 3 convolutional filters to

earn local n-gram features. 

We believe that putting a convolutional network before the

STM in a serial configuration is reasonable only for the cases

here the input is too large to be processed by the LSTM. Here,

e use the parallel setting and both LSTM and CNN directly

rocess the embedded vector through which the most effective

eature maps are generated via two paths and the merged features

re passed into a fully connected layer. The first path is formed

y three convolutional blocks. To capture various n-grams in the

entence, we use three types of convolutional filter size. Each

onvolutional block is formed by three components: the convo-

ution layer with specific kernel size, the max pooling layer, and

he dropout. The second path is to utilize the capability of LSTM

etworks in capturing the sequential data. We leveraged a BiLSTM

etwork, a kind of bidirectional RNN, to model the preceding and

ucceeding information of a sentence simultaneously. It helps to

ake long-term dependencies in a sentence from both directions.

n order to automatically focus on the words with crucial effect on

he classification, the BiLSTM is used with an attention structure.

inally, the outputs of these two paths are merged and fed into a

ully connected layer with softmax activation, which indicates the

robability of having an actual association in the sentence. 

.2.1. Attention mechanism 

Attention-based neural networks have recently shown suc-

ess in a variety of NLP tasks ranging from machine translation

 Choi et al., 2018 ), question-answering ( Min et al., 2018 ), disease

lassification ( Guan et al., 2018 ) to biomedical relation extraction
 Peng Zhou et al., 2016 ; Lin et al., 2016 ; Verga et al., 2018 ). We

uilt an attentive neural model by modifying the Tensorflow

mplementation of BiLSTM relation classification of Zhou et.al

 Peng Zhou et al., 2016 ). When a high-level BiLSTM feature vector

s learned by LSTM layers, we use an attention layer to generate

 weight vector and multiply the word-level features from each

ime step to weight vector. 

Let H be a matrix of LSTM output vectors [h 1 , h 2 , …, h n ] , where

 is the sentence length. A weighted sum of LSTM output vectors

omposes the representation r of the sentence. 

 = tanh ( H ) (1) 

= sof tmax 
(
w 

T M 

)
(2) 

 = H αT (3) 

here H ∈ R d 
w ×n , d 

w is word embedding size, w is a vector of

rainable weights and w 

T is a transpose. The dimension of w, α,

 is d 

w , n, d 

w respectively. The sentence-pair representation for

lassification is attained by: 

 

∗ = tanh ( r ) (4) 

.2.2. Transfer learning 

The aim of the transfer learning is to improve a learner from

ne domain by transferring knowledge from a similar domain

 Weiss et al., 2016 ). It has been used in many applications such as

amed entity recognition ( Arnold et al., 2008 ), text classification

 Do and Ng, 2006 ), sentiment classification ( Khan et al., 2018 ),

nd image classification ( Liu et al., 2018 ; Han et al., 2018 ). While

here is not a large dataset in the gene-disease domain, the lack
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Fig. 5. Generating a new model using transfer learning. Transfer learning is used as a feature extractor so it learns high level features which are not specific to the training 

data. The last 4 layers are removed from the base model and the remained layers are used as the feature extractor. These features along with the embedded sequence are 

fed into the new model and the new classifier is trained for the target classes. 
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of sufficient data makes it difficult to train a neural network with

significant results. 

Here we trained a base model using our generated corpus,

where we have sufficient training data. This model is used as a

pre-trained model for a feature extraction method. 

Considering a deep network as the base, various approaches for

transferring knowledge can be utilized. For most of the cases, the

last layers of the base network are discarded due to their domain

dependent features. First, layers can be utilized both as a feature

extractor or combined with the first layers of the target model. In

the second case, transferred layers from the base are frozen during

training of the target model. We used the first approach, where

we extract first layers of the base model and utilize them as the

feature extractor. As shown in Fig. 5 , the inputs of the new model

are fed into the extracted layers and the output vector is used to

produce features for the new model. 

We removed the four last layers from the network trained

on our corpus and used the remained layers as feature extractor

layers. Finally, the extracted features, together with embedded

sequence data, are used as input for the new model. 

4. Datasets 

We have used various datasets in our experiments. The aim

of this diversity is evaluating the performance of Deep-GDAE

in different benchmark datasets. All applied datasets fall into

gene-disease or SNP-Phenotype association extraction categories. 

These biomedical relation extraction datasets are standard

datasets that have been used in several recent studies such

as Bravo et al. (2015) , Lee et al. (2019) , Gao et al. (2019) , and

Deepika et al. (2019) . 

4.1. BeFree corpus 

BeFree ( Bravo et al., 2015 ) is a text mining system for identi-

fying biomedical information. It has been applied during several
Table 1 

Statistics of BeFree corpus (GAD dataset). 

Class Number of unique diseases Number

Negative 137 402 

Positive 209 544 

False (no Association) 462 897 

Total 535 1131 
iomedical tasks. BeFree can detect some entities such as disease,

rugs and genes, and the association between them (by using

ome shallow and deep syntactic features of text) from a large

olume of texts. The datasets we used for our experiments were

aken from BeFree. 

.1.1. GAD dataset 

To obtain a large benchmark of GDAs along with associated

entences from literature, we used the corpus generated by BeFree

ystem based on Genetic Association Database (GAD). GAD is an

rchive of human genetic association studies of complex diseases

nd disorders. GAD contains more than 130,0 0 0 associations with

ifferent types of information; however, it is filtered by BeFree

ased on the availability of a label and Entrez Gene Identifier. 

BeFree uses a simple method for generating false class samples

n comparison with our elaborate method, which will be explained

n the next section. They select sentences with co-occurrences be-

ween a disease and a gene found by their BioNER system if a sen-

ence is not annotated by GAD curators as GDAs. Table 1 represents

he statistics of the BeFree dataset separated by a sentence label. 

Some sample sentences of relation types between genes and

iseases are presented in Fig. 6 . The relationships between genes

nd diseases are categorized into three classes: positive, negative

nd neutral. A true label (positive and negative) indicates the

eal association between the gene and the disease. In contrast,

 neutral label shows that gene and disease co-occur but no

elationship can be found between them in the sentence. 

.1.2. EU-ADR dataset 

The EU-ADR dataset contains annotations on drugs, diseases,

enes and proteins, and associations between them ( Van Mulligen

t al., 2012 ). In this study, we used only GDAs to evaluate the

ethod. Each association is classified according to its level of

ertainty as positive association (PA), negative association (NA),

peculative association (SA); or false association (FA). 
 of unique genes Number of train samples (Sentences) 

967 

1834 

2529 

5330 
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Fig. 6. Association representation of a gene-disease in some sentences. 

Table 2 

Statistics of the BeFree corpus (EU-ADR dataset). 

Class Number of unique diseases Number of unique genes Number of train samples (Sentences) 

Negative 9 16 19 

Positive 95 150 213 

Speculative 20 24 30 

False (no Association) 40 73 93 

Total 118 218 355 
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Table 3 

Basic statistics of the SNPPhenA corpus in terms of test. 

Item Train Test Total 

Files 270 90 360 

Sentences 1940 685 2625 

Key sentences 362 121 483 

SNP 691 244 935 

Phenotypes 496 158 654 

SNP-Phenotype association candidates 935 365 1300 

Neutral candidates 142 166 308 

Negative candidates 91 29 120 

Positive candidates 702 170 872 
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• Positive association (PA): Existence of association between en-

tities is stated in the sentence 
• Negative association (NA): Absence of any association between

the entities is stated in the sentence. 
• Speculative association (SA): The sentence declares the possibil-

ity of a relationship between entities 
• False Association (FA): There is no statement about entity rela-

tionship in the sentence 

The EU-ADR corpus is based on 100 MEDLINE abstracts for

ach association set, and its annotation was conducted by three

xperts. This data set is small in comparison with GAD in the

tatistics presented in Table 2 . 

.2. SNPPhenA corpus 

SNPPhenA ( Bokharaeian et al., 2017 ) contains ranked associa-

ions of single-nucleotide polymorphisms and phenotypes which

s extracted from literature. Three main steps were applied in

onstructing it: consisting of (1) collecting documents, (2) auto-

atically and manually recognizing the SNP and phenotypes, and

3) annotating the associations and related information. It includes

everal processes such as collecting relevant abstracts, automatic

amed Entity Recognition (NER), identifying the SNP-phenotype

ssociations, negation, modality markers, and their level of confi-

ence. The annotated associations in the corpus were divided into

hree classes: positive, negative, and neutral candidates. Table 3

resents the statistics of the SNPPhenA corpus. By evaluating our

ethod over this corpus, we have shown the applicability of our

roposed method in similar domains. 

.3. Generating GDA corpus 

Deep learning requires a huge dataset for training a model.

long with the benchmark dataset, we have generated a corpus

sing DisGeNET, a database of GDAs ( Bauer-Mehren et al., 2010 )

nd PubTator ( Wei et al., 2013 ), to retrieve biomedical texts. Most

achine learning approaches require both samples of sentences

epresenting the true association between gene and disease names
nd sentences with co-occurrence of these mentions without

ssociation between them, which are referred as false or neutral

amples. True associations can be accessed from various databases

hile false samples should be prepared for each study. Here we

ropose using a systematic approach to generate these samples. 

Using PubTator, we find all the PMIDs containing at least one

ene and disease name. Then all the sentences are passed through

hree steps of filtering for producing the false instances. 

Samples of the true class are extracted from DisGeNET, con-

idering only curated associations. DisGeNET was constructed

utomatically and contains 80 0 0 sentences with 1904 and 3635

nique diseases and genes respectively. 

.3.1. Generating false class samples 

A sentence from the literature which contains both gene and

isease names that are not semantically associated could be

onsidered to be a false sample. Preparing these samples could

e challenging since there are only a few resources which report

hese sentences. On the other hand, there is no specific approach

or generating these samples. To overcome this limitation, we used

ubTator to extract all the PubMed abstracts which contain at

east one gene and disease mention. The process of generating the

DA corpus is shown in Fig. 7 . 

PubTator provides the named-entity recognition (NER) results

f genes and diseases. Finding a list of PMIDs with at least one

utation and drug name made it possible to consider only the
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Table 4 

The GDA Corpus Statistics. 

Class Number of unique diseases Number of unique genes Number of train samples (Sentences) 

True (Association) 1062 2276 4000 

False (no Association) 842 1677 4000 

Total 1904 3635 8000 

Fig. 7. Process of generating the GDA corpus. PubMed abstracts are extracted by 

the Pubtator text mining tool and after some preprocessing, a three-step filtering is 

applied. 
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abstracts that these biomedical entities exist within rather than

considering all of the 27 million PubMed abstracts. 

Sentences within abstracts which contain both mentions are

considered for a further filtering process. To exclude sentences that

report an association, we conducted a three-step filtering process. 

4.3.1.1. Filtering by association samples of DisGeNET. We found

sentences including gene-disease pairs that are not contained in

the DisGeNET database. 

Filtering all association samples from DisGeNET, including

curated and predicted samples, are considered to be the first step

of filtering. There are about 1.5 million samples and we filtered

them out from the candidate false samples that were extracted

using PubTator. 

4.3.1.2. Filtering by association samples of CTD. For the second

step, we considered all curated and inferred GDAs from CTD,

which contains over 24 million associations ( Davis et al., 2016 ).
Fig. 8. Visualized Dependency Tree. The lowest common ance
urated GDAs are extracted from the published literature by CTD

iocurators or are derived from the OMIM database. Inferred

ssociations are established via CTD–curated chemical-gene in-

eractions. Clearly, we removed the sentences containing known

ene-disease relations that were contained in CTD and considered

alse candidates which were not within these samples for the

hird and final filtering process. 

.3.1.3. Filtering by considering common words in true associations.

or the last filtering step, we find all common words connecting

he gene and disease mentions in the true sentences, which is

imilar to dependency parsing ( Thompson and Ananiadou, 2017 ).

irst of all, we generated a directed acyclic dependency graph for

ach sentence in the candidate false set using the tokens gener-

ted by spaCy ( Honnibal 2018 ). Then, within the tree structure,

e found the nodes on the path connecting disease and gene

entions by extracting the lowest common ancestor node. 

After sorting the connecting words by the frequency of their oc-

urrences, 500 top words were selected as the common words.

his list includes words such as associate, lead, cause, result, link

hich have been used frequently as the connecting term between

ene and disease mentions in the true sentences. It should be

oted that we generated this list over all associations of DisGeNET

ith an association score greater than 0.5. 

Final filtering is conducted by finding the connecting word in

he false sentences and discarding those sentences whose con-

ecting word appears in the common word list of true sentences.

able 4 shows the statistics of the generated dataset. An equal

rue to false ratio was used as reported in the table. 

The importance of the filtering process presented in this paper

s clear if we consider the unavailability of these samples in the

atasets. Even the BeFree dataset, which is used in this study,

ontains samples in the false group that are wrongly placed

ithin the false samples. For instance, the following sentence “The

resent study demonstrated that genetic variations of VEGFR2

re significantly associated with atopy in the Korean population."

hould be a true group example but is instead placed in the false

roup. According to Fig. 8 , if we compute the lowest common

ncestor node between the gene and disease term in the sentence,

e find the term “associated”. Since this is a common term

xtracted from true associations, this sentence would have been

ltered out from the false associations in the previous step. 

The GDA corpus can be used as a benchmark dataset for

he performance evaluation of machine learning approaches.
stor in the path between gene and disease is detected. 
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Table 5 

The hyper-parameter settings used in our 

model. 

Epochs 50 

Learning Rate 0.0005 

Dropout Rate 0.25 

Batch Size 32 

Regulizer (Dense Layers) L2 (0.05) 

Recurrent Requlizer (LSTM) L2(0.05) 
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urthermore, in this study, we used it to train a base model of

ransfer learning which considerably improves the accuracy of the

pproach in comparison with using only a target dataset. 

. Experiments 

In this section, we evaluate the performance of our model on

he benchmark datasets described in Section 4 . BeFree and LCK are

oth kernel-based approaches which employ some global and local

ernels to classify input based on the association between two en-

ities. Deep-GDAE utilizes deep neural networks and automates the

eature engineering process by learning to create and sift through

ata-driven features. To achieve a fair comparison, we employed

he same configurations for our experiments over various datasets.

enerally, 10-fold cross-validation is performed to measure preci-

ion, recall, and F-measure metrics. For the generated corpus, we

sed hold-out validation since there was an adequate number of

amples to overcome high variance in the results. Therefore, half of

he samples (40 0 0) were chosen for training and the next half for

alidation and testing with an equal share. Table 5 shows the hyper

arameters of our deep model that were used in the experiments. 

.1. Evaluation using GDA-corpus 

We performed the neural network architecture presented in

ig. 4 for implementing the evaluating binary gene-disease relation

lassification task on our generated dataset. We evaluated various

re-trained word embedding word vectors in our experiments;

ne of which was a general mode trained on common crawled

ata Fast Text (crawl-300d-2 M) and the others customized for

iomedical text data. 

Table 6 depicts the results obtained from applying different

ord embedding models. Our dataset includes about twenty thou-

and words, but the models do not cover some of them in which

e generated a random vector instead of pertained word vectors. 

As the results show, the models trained over biomedical text

overed a higher number of words and therefore achieve better

esults. For example, we achieved slightly weaker results using

astText since it was trained on common texts in contrast with

he larger embedding size. The best results were achieved using

ubMed-and-PMC, where the model covers both PubMed and PMC

exts and, the word coverage rate is at maximum. 

.2. Evaluation using the BeFree corpus 

.2.1. GAD dataset 

The corpus generated using the GAD dataset can be considered

n two formulations. In the first formulation, GDAs annotated
Table 6 

Evaluation of the various pre-trained word embedding models. 

Word embedding The fraction o

PubMed-and-PMC-w2v ( Van Landeghem et al., 2011 ) 19.2% 

Fast Text (crawl-300d-2 M) ( Mikolov et al., 2017 ) 31.8% 

PubMed w2v ( Van Landeghem et al., 2011 ) 23.4% 

PubMed-shuffle-win-30 ( Chiu et al., 2016 ) 22.9% 
y GAD curators as positive or negative were labeled as true.

long with false samples, a binary classification problem could be

efined. In the second formulation, we also trained a classifier that

istinguishes between positive, negative, and false associations

ithin a multi-class problem. Table 7 shows the evaluation results

or these formulations based on 10-fold cross-validation. For the

ulti-class formulation, we achieved improved results, and for

he binary classification, the results we achieved are competitive.

onsidering the fact that we did not use any extra features, these

esults are remarkably significant. 

.2.2. EU-ADR dataset 

We compared Deep-GDAE with BeFree on the EU-ADR corpus,

hich includes annotations for different kinds of associations. The

esults are show in Table 8 . Although the recall of Deep-GDAE was

lightly lower than that of BeFree, an increase was observed in the

-measure of Deep-GDAE compared to BeFree. Furthermore, the

odel trained on the GAD corpus performed better in terms of

recision. 

In summary, our experiments verify that our proposed method

chieves competitive results with Befree, while does not use any

iomedical feature. These results are significant since Befree is one

f the best approaches introduced in this domain. 

.2.3. Discovering SNP-phenotype associations 

In this section, our method was performed on the SNPPhenA

orpus ( Bokharaeian et al., 2017 ), which was developed with

he purpose of extracting the ranked associations of SNPs and

henotypes from GWA studies. 

Based on genetic epidemiology, the GWA study describes the

rocess of evaluating several common genetic variants in vari-

us people so as to find a correlation between a variant and a

henotype trait. We compared the performance of Deep-GDAE

ith the best result reported in Bokharaeian et al. (2017) which

mploys two kernel methods for categorizing the associations;

he local context kernel and sub-tree kernel. The performance

f Deep-GDAE in comparison with this method is reported in

able 9 . The superiority of Deep-GDAE is about producing more

ccurate results considering the fact that we have not used any

eature except raw sentences for this experiment. The reported

-measure for LCK has been obtained for the identification of

ositive SNP-phenotype relation candidates. 

In this case, the model tested on the GAD corpus performed

etter in terms of all the performance measures when compared

o the state-of-the-art approach of Bokharaeian et al. (2017) . 

Another set of experiments were conducted to predict the con-

dence level for the sentences labeled as positive associations. The

inary Bag of Word (BOW ( Bokharaeian et al., 2017 )) method was

erformed on the SNPPhenA corpus to predict the degree of confi-

ence for the associations; we used the same network without any

hange for this experiment and achieved improved predictions. 

Table 10 compares the performance measures of two ap-

roaches. However, it is clear that for reasonable results, more

amples are required to train the model. In this experiment, only

ositive associations were considered; which are too small to train

 general model. 
f words not found in the model Embedding size F-measure 

200 88.2% 

300 87.1% 

200 87.2% 

200 87.2% 
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Table 7 

Evaluation results for binary and multi-class classification. 

Binary classification Multi-class classification 

Precision Recall F-measure Precision Recall F-measure 

BeFree ( Bravo et al., 2015 ) 77.8% 87.2% 82.2% 66.0% 73.8% 69.6% 

Deep-GDAE 73.59% 86.7% 78.86% 71.62% 72.64% 71.63% 

Table 8 

Evaluation results on the EU-ADR dataset. 

Precision Recall F-measure 

BeFree ( Bravo et al., 2015 ) 75.1% 97.7% 84.6% 

Deep-GDAE 78.1% 97.0% 85.8% 

Table 9 

Association extraction on the SNPPhenA corpus. 

LCK ( Bokharaeian et al., 2017 ) Deep-GDAE 

F-measure 71.3% 73.97% 

Recall 68.7% 74.69% 

Precision 69.2% 75.99% 

Table 10 

Association confidence level prediction over the SNPPhenA cor- 

pus. 

LCK ( Bokharaeian et al., 2017 ) ∗ Deep-GDAE 

F-measure 45.8% 53.10% 

Recall 43.7% 55.53% 

Precision 43.03% 53.91% 

∗ Presented results are averaged for all classes (Weak, Moder- 

ate, Strong). 

Table 11 

the results of Deep-GDAE using transfer learning. 

Precision Recall F-measure 

Deep-GDAE (With Transfer Learning) 80.4% 79.4% 79.8% 

Deep-GDAE 73.97% 74.69% 75.99% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

List of text corpora used for BioBERT pre- 

trained on PubMed and PMC in biomedical 

domain ( Lee et al., 2019 ). 

Corpus # of words (B) 

PubMed Abstracts 4.5B 

PMC Full-text articles 13.5B 
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The confidence degree of positive relation candidates has been

annotated by a domain expert. The confidence level of relations

has been classified into weak, moderate and strong based on the

relevance intensity between each phenotype and the correlated

SNP mention in the abstracts. The association is considered neutral

when the level of confidence is set to “zero”. 

5.2.4. Transfer learning 

We selected the SNP-phenotype dataset for transferring knowl-

edge from the gene-disease domain. The rich features transferred

from the base model can help to train the new model with SNP-

phenotype sequences. Table 11 shows the results of transferring

knowledge from the base model trained on our generated gene-

disease corpus to the new model for SNP-phenotype associations. 

The model, trained in conjunction with transferred features,

exhibits a significant improvement. This is mainly because of

using pre-trained model. As the SNP-phenotype dataset isn’t large,

transferring knowledge from a similar domain with adequate

training data provides some useful features for the new model.

The main challenge of machine learning based methods and deep

networks specifically is data scarcity. We believe this limitation

can be tackled in the future by utilizing transfer and multi-task

learning. That is to say, for every domain with limited labeled

data, there are related contexts from which to transfer knowledge. 
.3. Using BERT and BioBERT language models as feature extractors 

Besides applying a base model trained on our corpus, we also

tilized BERT (Bidirectional Encoder Representations from Trans-

ormers) ( Devlin et al., 2018 ) and BioBERT (bidirectional Encoder

epresentations from Transformers for Biomedical Text Mining)

 Lee et al., 2019 ) as feature extractors. BERT is a method of pre-

raining language representations which developed to pre-train

eep bidirectional representations by jointly conditioning on both

eft and right context in all layers. Thus, these representations

an be fine-tuned to generate state-of-the-art models for a wide

ange of natural language processing tasks without considerable

ask-specific modifications. The two models we used have the

ollowing architectures: 

- BERT-Base: 12-layer, 768-hidden, 12-heads, 110 M parameters 

- BERT-Large: 24-layer, 1024-hidden, 16-heads, 340 M parameters

BioBERT is a domain specific language pre-trained on large-

cale biomedical corpora. We employed the model pre-trained on

ubMed abstracts (PubMed) and PubMed Central full-text articles

PMC). BioBERT was fine-tuned on BERT-Base. The statistics of

he text corpora on which BioBERT was pre-trained are listed in

able 12 . 

The hidden layers without any pooling were taken to ob-

ain a fixed-dimensional representation for each word in the

nput sentence. This is a word-level representation rather than a

entence-level representation and is used as a word embedding

odel. Thus, there is a 768 and 1024 dimensional vector for

ach token based on BERT-Base and BERT-Large, respectively. This

epresentation led to an improvement in the performance than

sing any pooling method. 

As BERT and BioBERT efficaciously transfer the knowledge

rom a large number of texts to the text mining models, they can

e used as enriched sources of features. Since the last layers of

he models are trained for specific applications, they were not

aken into consideration. As a result, we removed the last layer

rom BioBERT and BERT-Base. Due to a large number of layers of

ERT-Large, the last two layers were eliminated from the model. 

As the evaluations show in Table 13 , BioBERT does not achieve

 significantly high F-measure when compared with BERT-Large. It

ight be possible to devise more effective fine-tuning ways in the

uture designs particularly on BERT-Large in order to obtain more

mproved performance. 

. Deep-GDAE error analysis 

Error analyses were performed for binary classification using

he GAD dataset in order to better understand the limitations of
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Table 13 

Evaluation results using Bert based features. 

Binary classification Multi-class classification 

Precision Recall F-measure Precision Recall F-measure 

BERT-Base ( Devlin et al., 2018 ) 75.02% 83.26% 78.79% 74.09% 73.21% 73.50% 

BERT-Large ( Devlin et al., 2018 ) 76.37% 82.08% 79.05% 74.85% 75.60% 74.88% 

BioBERT ( Lee et al., 2019 ) 75.13% 85.18% 79.77% 74.73% 75.20% 74.75% 

Fig. 9. The performance of Deep-GDAE along two factors: sentence length and distance between entities. (a) the correlation matrix depicts the association among three 

parameters. (b) Short sentences gives a boost to Deep-GDAE’s accuracy. (c)Distance denotes the number of words between the gene and disease in the sentence. Short 

distances raise the accuracy of Deep-GDAE. 
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eep-GDAE. The distribution of the associated and non-associated

ntities in the dataset is 53% and 47%, respectively. We observed

hat the accuracy of the classifier is 0.78 and the dominant error is

lassifying the non-associated entities as associated. Moreover, we

ound that some of the incorrect samples returned by Deep-GDAE

ere affected by the distance between entity pairs in the sentence

nd its length. 

The correlation matrix in Fig. 9 (a) shows the negative correla-

ions among accuracy and both sentence length and the distance

etween the gene and disease in the sentence. Analysis indicates a

trong inverse correlation between distance and accuracy. Further-

ore, distance is independent of sentence length and there is a

eak correlation between them with respect to correlation matrix.

As Fig. 9 (b) shows, the classifier performance varies with

he sentence length. Deep-GDAE has a high precision on short

entences, but its precision deteriorates quickly as sentences get

onger. This shows that long sentences tend to have complex rela-

ions which are difficult to extract. Our experiments demonstrate

hat Deep-GDAE can identify relations more reliably when the

ntity pairs are closer to each other in the sentence. Fig. 9 (c)

eports a clear correlation between the distance of entities in the

entence and the accuracy of Deep-GDAE. This correlation shows a

igh accuracy where the distance is 4 words or less. 

The proposed approach also functions well for the case of

ighly frequent words. To consider this aspect, we first extracted

00 high-frequent words on the path between the gene and

isease in all positive sample sentences of DisGeNET. Then, we

bserved that sentences with these common words on the path

etween gene and disease achieve an improved true positive rate

f 5% over the sentences with no such feature. 

. Conclusion 

In this paper, we have presented Deep-GDAE, an attention-

ased de-ep neural network integrated from a CNN and a BiLSTM

etwork for identifying GDAs in biomedical literature. This model

mploys PubMed abstracts to determine the existing relationship

etween a gene and a disease. We developed a new corpus in
rder to train a base model for eliciting the relations of gene and

isease from PubMed abstracts. The corpus generating process

ncludes gathering relevant abstracts from PubMed, NER tagging

nd three main filtering steps and annotating the associations as

rue or positive. To make use of external knowledge for represent-

ng each word of the sentence, we used pre-trained word vectors

n this study. Furthermore, we also trained a position vector

hich took into account the relative positional index of each

ord from the target gene and disease mentions in the sentence.

ur experiments showed that using attention mechanism leads

o a better result as it highlights the words that have crucial

ffect on eliciting associations. We evaluated the performance of

eep-GDAE in comparison with various state-of-the-art relation

xtraction systems in the biomedical domain. To the best of our

nowledge, this is the first study which has used a deep model

or gene-disease relation extraction and our experiments showed

he superiority of Deep-GDAE. Since the presented method is not

ependent on domain-specific features, it can be applied to any re-

ation extraction problem. The proposed deep network achieves a

etter F-measure both in terms of binary and multi-class relations.

In future work, we will extend our transfer learning model to

rain a base model using an extensive corpus. Such a model can

e utilized in target domains which suffer from data scarcity in

rder to achieve considerable improvements. 
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